
DRAT: An Unobtrusive, Scalable Approach to Large
Scale Software License Analysis

Chris A. Mattmann1,2, Ji-Hyun Oh1,2, Tyler Palsulich1*, Lewis John McGibbney1, Yolanda Gil2,3, Varun Ratnakar3

1Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109 USA
mattmann@jpl.nasa.gov

2Computer Science Department
University of Southern California

Los Angeles, CA 90089 USA
{mattmann,jihyuno}@usc.edu

3USC Information Sciences Institute
University of Southern California

Marina Del Rey, CA
{gil,varunr}@ isi.edu

Abstract— The Apache Release Audit Tool (RAT) performs

software open source license auditing and checking, however
RAT fails to successfully audit today's large code bases. Being a
natural language processing (NLP) tool and a crawler, RAT
marches through a code base, but uses rudimentary black lists
and white lists to navigate source code repositories, and often
does a poor job of identifying source code versus binary files. In
addition RAT produces no incremental output and thus on code
bases that themselves are "Big Data", RAT could run for e.g., a
month and still not provide any status report. We introduce
Distributed "RAT" or the Distributed Release Audit Tool
(DRAT). DRAT overcomes RAT's limitations by leveraging: (1)
Apache Tika to automatically detect and classify files in source
code repositories and determine what is a binary file; what is
source code; what are notes that need skipping, etc. (2) Apache
Solr to interactively perform analytics on a code repository and
to extract metadata using Apache Tika; and finally (3) Apache
OODT to run RAT on per-MIME type (e.g., C/C++, Java,
Javascript, etc.) and per configurable K-file sized chunks in a
MapReduce workflow. Each Mapper task is an instance of RAT
running on a K-file sized per Multipurpose Internet Mail
Extensions (MIME) type chunk (split using Tika) and each
mapper produces and incremental and intermediate log file; and
where the Reducer aggregates the individual log files.

Keywords— DRAT, Open source, Software license auditing
* Palsulich performed this work while at NASA JPL; currently at Google

I. INTRODUCTION
Due to an exponential increase in the volume and

complexity of data, software is undergoing rapid development
to keep pace and to effectively manage and analyze the data at
today’s scale. Above all, we are facing an increasing number
of open source projects hosted in public repositories across
many domains. As such the license of open source software
becomes critical to grant everyone legally appropriate
permission to freely use, modify, and distribute the open
source software [1]. There exist more than 60 licenses, such as
Berkeley Software Distribution (BSD), General Public
License (GPL), MIT license, the Apache License, version 2
(“ALv2”), and so on, approved by Open Source Initiative

(OSI) for complying with open source
definition, however, there exist slight differences among these
licenses [2]. For instance, GPL is a “copyleft” license that
only allows derivative works under the original license,
whereas MIT license is a “permissive” license that grants the
right to sublicense the code under any kind of license [2]. This
difference could affect architectural design of the software.
Furthermore, circumstances are more complicated when
people publish software under the multiple licenses.
Therefore, an automated tool for verifying software licenses in
code bases is highly desired.

As a part of the Apache Software Foundation (ASF)
project, Apache Creadur [3], a Release Audit Tool (RAT) was
developed especially in response to demand from the Apache
Incubator and its dozens of projects. All codes donated from
individuals or organizations to ASF should go through the
Apache Incubator as an entry path. The Apache Incubator
ensures that the software has correct open source licenses [4].
Therefore, the primary function of the RAT is automated code
auditing and open-source license analysis focusing on headers.
RAT is a natural language processing tool written in Java to
easily run on any platform and to audit code from many
source languages (e.g., C, C++, Java, Python, etc.). RAT can
also be used to add license headers to codes that are not
licensed [5].

In the summer of 2013, our team ran Apache RAT on
source code produced from the Defense Advanced Research
Projects Agency (DARPA) XDATA national initiative whose
inception coincided with the 2012 U.S. Presidential Initiative
in Big Data. XDATA brought together 24 performers across
academia, private industry and the government to construct
analytics, visualizations, and open source software mash-ups
that were transitioned into government projects and to the
defense sector. XDATA produced a large Git repository
consisting of ~50,000 files and 10s of millions of lines of
code. DARPA XDATA was launched to build a useful
infrastructure for many government agencies and ultimately is
an effort to avoid the traditional government-contractor
software pipeline in which additional contracts are required to

reuse and to unlock software previously funded by the
government in other programs.

All XDATA software is open source and is ingested into
DARPA’s Open Catalog [6] that points to outputs of the
program including its source code and metrics on the
repository. Because of this, one of core products of XDATA is
the internal Git repository. Since XDATA brought together
open source software across multiple performers, having an
understanding of the licenses that the source codes used, and
their compatibilities and differences was extremely important
and since there repository was so large, our strategy was to
develop an automated process using Apache RAT.

We ran RAT on 24-core, 48 GB RAM Linux machine at
the National Aeronautics and Space Administration (NASA)’s
Jet Propulsion Laboratory (JPL) to produce a license
evaluation of the XDATA Git repository and to provide
recommendations on how the open source software products
can be combined to adhere to the XDATA open source policy
encouraging permissive licenses. Against our expectations,
however, RAT failed to successfully and quickly audit
XDATA’s large Git repository. Moreover, RAT provided no
incremental output, resulting in solely a final report when a
task was completed. RAT’s crawler did not automatically
discern between binary file types and another file types. It
seemed that RAT performed better by collecting similar sets
of files together (e.g., all Javascript, all C++, all Java) and
then running RAT jobs individually based on file types on
smaller increments of files (e.g., 100 Java files at a time, etc).

The lessons learned navigating these issues have
motivated to create “DRAT”, which stands for "Distributed
Release Audit Tool". DRAT directly overcomes RAT's
limitations and brings code auditing and open source license
analysis into the realm of Big Data using scalable open source
Apache technologies. DRAT is already being applied and
transitioned into the government agencies. DRAT currently
exists at Github under the ALv2 [12]. In this paper, we will
describe the DRAT in detail. The remainder of this paper is
structured as follows. Section 2 documents DRAT’s
architecture and its workflow. Section 3 presents the results of
running DRAT on several national repositories and on its
performance. We present related work in section 4 and draw
conclusions and provide future work in final section.

II. DRAT ARCHITECTURE
DRAT is a MapReduce (M/R) style [7] RAT workflow

that runs on top of Apache Object Oriented Data Technology
(OODT) [8], a scientific data processing, acquisition, and
dissemination system. M/R, a methodology for processing a
large amount of unstructured data with a parallel, distributed
algorithm, consists of two components: “mapper” and
“reducer”. The map procedure takes an input files and
generates a set of intermediate outputs. The reduce procedure,
in turn, consolidates all the intermediate results from the
mapper into one final result. In DRAT, the “mapper” is RAT,
and the “reducer” is a log collector to combine all the
intermediate outputs into a global RAT report that can be used
for stats generation. DRAT leverages Apache Tika [9] as a

splitter to automatically discern file Multipurpose Internet
Mail Extensions (MIME) types. As one of top-level projects in
the Apache Software Foundation (ASF), Tika is a tool for
detecting MIME type and extracting metadata from a wide
range of file types based on Internet Assigned Numbers
Authority (IANA) registry. Fig. 1, for instance, shows that the
automated refinement of files in the XDATA Git repository
using Tika (lower in Fig 1) is comparable to the classification
resulted from using grep and find commands (upper in Fig. 1).

Although newer versions of Tika add support for new
document formats, it is impossible to support all the file
formats in the world. Thus, Tika is extensible allowing users
to customize the tika-mimetypes.xml configuration file to add
new MIME types. That said, Tika currently supports 1400+
MIME types and is one of the most comprehensive MIME
repositories that exist.

Figure 2 depicts a schematic representation of the DRAT
workflow. A source repository is ingested into Apache OODT

Figure 1. Distribution of formats of files from XDATA Git
repository identified by grep and find command (upper) and by
Tika (lower).

as a start, and files and codes in the repository are catalogued
in place. The MIME type of file is classified using Tika and in
addition file metadata is extracted (ingestion date/time, source
location, destination location, filename, etc.). After initial
cataloging, the Tika file and code metadata is dumped into the
Apache Solr search engine, to make it available for analytics
and characterization in a distribution fashion. Solr is a
scalable, distributed search server built on top of Apache
Lucene, and our DRAT workflow reads metadata and file
information directly from Solr. Once the code information is
available in Solr the M/R style workflow gets started using
Apache OODT: the mapper’s job runs RAT on a 100 files
(configurable) of the same MIME type per directory
partitioned by Tika. The incremental output from the map
procedure is aggregated by using RAT log combiner and
OODT ensures all mappers and reducers are scheduled.

III. EXPERIMENTS AND EVALUATION
DRAT was run across the entire XNET Git repository.

The result of license auditing is presented in Fig. 3. It displays
the counts of Notes, Binaries (no license), Archive (tar/zip, no
license), Standards (non-Apache, OSI approved license e.g.,
BSD, MIT, GPL, etc), Apache (ALv2 licensed), Generated
(either source or binary files), and Unknown (Non-discernible
license) files in the repository identified by DRAT – note this
is adapted from RAT’s existing output log format. Of the
19,491 source code files in the repository, 53% (10,271) use
OSI approved licenses; 12% (2,398) have ALv2; 35% (6,795)
have unknown licenses that requires further analysis. Of the
initial 50,000 flies, only about half were actual source code;
the remaining files were binary, and ignored by DRAT.

DRAT overcomes the limitations of RAT by 1) producing
incremental output, 2) using Apache Tika for automated black
and white lists by file type/MIME type, 3) using Apache Solr
to analyze code repositories and search for files, and 4) using
Apache OODT and M/R to scale out on large code bases.

 One of the most remarkable improvements with DRAT is
a dramatic reduction of total run time. As an example, Fig. 4
shows results of 3 experiments we carried out on the basis of
DARPA XDATA Git repository in which we measured each

of DRAT’s stages: (1) ingestion in place (Ingest); (2) Solr
dumping (Solr Dumper); (3) MIME partitioning with Tika
(MIME partitioner); and (4) running RAT as a Mapper (RAT)
and in which we computed the average time of the three runs.
Note that we do not provide details on the reduce step since it
represents a small contribution to the total time (~1 second).
The horizontal axis shows major steps that consist of DRAT
and the vertical axis shows execution time for each step. The
average DRAT total run time is about 2 hours on a Macbook
with dual quad cores, and 8 GB RAM, while a single job ran
in 4 weeks on a fairly large machine based on more than 24
cores with 2GB of RAM per core as mentioned previously.

IV. RELATED WORK
This work applies to NASA and DARPA code auditing

activities and more generally to software development as a
whole in any agency, Federally Funded Research and
Development Center (FFRDC), private industry, and so on.
Furthermore, an official memorandum released by the Office
of Science and Technology Policy (OSTP) in February 2013
encourages publishing results of federally funded research for
free availability to the public. Scientific software arising from
research is also an important asset of research results, which
should be freely accessed and broadly disseminated.

Utilizing DRAT, we conducted an exploratory study
aiming to develop a framework for software stewardship in
geosciences to empower scientists to manage their software as
valuable scientific assets in an open and transparent way.
Geoscience, including geology, hydrology, meteorology,
oceanography and so on, is a field with high reliance on
computing to simulate real-world physical rules and
principles. We used DRAT to perform license verification of
scientific software deposited in Computational Infrastructure
for Geodynamics (CIG) repository
(http://geodynamics.org/cig/software/). CIG is a community
driven organization focusing on developing and distributing
software for geophysics and related fields. Codes donated by
geoscientists in CIG are published under open source
licensing. Its repository hosts more than 500 thousand open
source files with 10s of millions of lines of code in a wide
range of disciplines in geodynamics and computational

XDATA Git

Crawler

File
Manager

Apache
Solr

Solr
Dumper

Workflow
Manager RATmime

part.

RAT
log

comb

Partition/Map and run
RAT with reasonable
of files in single dir

Combine individual
RAT k-partitions

(Reduce) into single
RAT log

1 Ingest Git repo into Apache OODT (ingest in place)

2 Dump FM catalog contents into Solr for easy analytics and
faceting using Apache OODT Solr dumper

3

Kick off M/R style workflow for
running distributed RAT by
partitioning all interesting
MIME type based files in e.g.,
k=100 files per directory RAT
jobs (provides incremental
output)

4

5

Figure 2. Automated software metadata and license checking
extraction architecture

0" 24" 0"

10271"

2398"
0"

6798"

19491"

0"

5000"

10000"

15000"

20000"

25000"

No
tes
"

Bin
ari
es"

Ar
ch
ive
s"

Sta
nd
ard
s"

Ap
ac
he
"

Ge
ne
rat
ed
"

Un
kn
ow
n"

To
tal
"

Apache'RAT'status'on'XNET'Git'

Figure 3. The number of files categorized by license type in
DARPA XDATA Git repository. Standards are OSI approved
licenses and Apache indicates ALv2 licenses.

science. It took approximately 33 hours (1,980 minutes) to run
DRAT on CIG repository as shown in Fig. 5. This is nearly 16
times as long as it took to run DRAT on the entire XNET Git
composed of nearly 50,000 files and 10s of millions of lines of
code for DARPA XDATA. Table 1 represents the result of
DRAT analysis on CIG and Fig. 5 shows running time.

Over 54% of the CIG code base as put up on the CIG site
are not code files, therefore, they are not analysed. While 23%
of the files are unlicensed source code, 23% of the files are
licensed using standards, i.e., BSD, MIT, OSI approved
licenses. Thus, roughly half of the actual source code for CIG
is either unlicensed or has unrecognizable license.

 We also executed DRAT on Penn State Integrated
Hydrologic Model (PIHM) package that consists of a few
source codes. This run takes only 10 minutes. Comparing
runtime of DRAT based on the different size of code bases,

DRAT scales linearly in the size of the code base.
In trying to expand the applicability of DRAT to broader

geoscience fields, DRAT has been run on software used in
Paleoclimatology community. National Oceanic and
Atmospheric Administration (NOAA) National Climatic Data
Center (NCDC) provides a catalogue of about 300 widely
used
software tools for Paleoclimatology [10] interoperating with
existing software repositories in Paleoscience domain. The

catalogue contains not only complex model source codes
developed by large institutes but relatively small pieces of
source code generated by individual scientists for ancillary
tasks related to their studies.

We have focused on the latter in particular because the
scientist-generated software tends to be less licensed than the
software created by large institutes due to the lack of
awareness of software licensing among scientists [11]. As
such, 27 software packages coded in diverse languages, such
as Java, R, Fortran, and Matlab, were selected from the
Paleoclimatology software catalog for running through
DRAT.

The performance of DRAT differs from our other
experiences reported in the paper. In particular, DRAT fails to
run properly for the software packages that consists of source
codes written in Matlab, widely used in Geoscience domain
for numerical computation and visualization.

This issue is related to the version of Tika implemented to
DRAT. DRAT currently uses Tika version 1.6 and that
version is unable to detect the MIME type of source codes
written in Matlab, causing the mapping operation to perform
incorrect classification on Matlab files. Although later
versions of Tika (e.g., 1.8) are capable of detecting the correct
MIME type of Matlab files (text/x-matlab), not all of the
Matlab files can be detected as Matlab file with Tika 1.8 due
to a conflict with filename extension (.m) of Objective-C
source code files as well with other issues relating to irregular
strings at the starting header of Matlab file.

Therefore, we have prepared a custom tika-
mimetypes.xml configuration file to improve Tika in terms of
detecting Matlab source code. While Tika 1.8 fails to identify
61 out of 103 Matlab files (right of Fig. 6) from the selected 6
packages, Tika 1.8 with the customized configuration file
succeeds to correctly detect all the Matlab files (right of Fig.
6). This modification is reflected in the latest released Tika
1.9. We are currently working on upgrading DRAT with the
latest version of Tika.

Ingest' Solr'
Dumper'

MIME'
par33oner' RAT' Total'

Run'1' 23' 10' 1' 115' 149'
Run'2' 51' 13' 0.47' 106' 170.47'
Run'3' 23' 9' 0.49' 12' 44.49'
Average' 32.33' 10.67' 0.65' 77.67' 121.32'

0'
20'
40'
60'
80'
100'
120'
140'
160'
180'

Ti
m
e%
(m

in
)%

DARPA%XDATA:%XNet%Git%DRAT%Analysis%(Timings)%

Run'1'

Run'2'

Run'3'

Average'

Figure 4. Execution time for M/R style distributed RAT

runs to completion

Table 1. The number of files cateogrized by license type in CIG repository
Notes Binaries Archives Standards Apache Generated Unknown Unanalyzed

0
(0%)

38
(0%)

0
(0%)

135,230
(23%)

1
(0%)

0
(0%)

134,949
(23%)

318,862
(54%)

0"

500"

1000"

1500"

2000"

2500"

Ingest" Solr"
Dumper"

MIME"
par77oner"

RAT" Total"

Ti
m
e%
(m

in
)%

DRAT%analysis%stages%

DRAT%analysis:%CIG%

Figure 5. Execution time for DRAT analysis on CIG

18#

0#

13#
5#

13#

0# 0#

13#11#

0#
8#

3#

23#

0# 3#

20#

7#
0# 2# 5#

31#

0#

16# 15#

103#

0#

42#

61#

0#

20#

40#

60#

80#

100#

120#

Pass# Fail# Pass# Fail#

with#Custom8mime# without#custom8mime#

RegEM# ANOVA# Arfit# BARCAST# GSEM# Meko# Total#

Figure 6. Matlab files detecting test using Tika

V. CONCLUSION AND FUTURE WORK
More so as code is developed in an increasingly open

source fashion, we need to run code analysis tools at scale to
perform software license checking to make sure software
dependencies are using compatible licenses. To this end,
DRAT has been developed to bring code auditing and open
source license analysis into the realm of Big Data using
scalable open source Apache technologies. From our early
experience, we posit that DRAT will provide an efficient tool
for auditing licenses that supports many disciplines, as we
have presented the results of a set of applications in the
geoscience field.

 Our future plan is to improve DRAT to be more
applicable for the license verification of source codes
produced by scientists from around the world in light of
rapidly growing reliance on scientist-created software across
scientific fields. In addition, current DRAT only deals with
locally available files so we also plan to develop efficient
methods to apply DRAT for a remote file system.

We envision DRAT becoming (like RAT) a Maven
plugin or a process that fits into continuous integration tools
eventually to do license checking. We also envision RAT as
not being the only code auditor that we can plug in.

ACKNOWLEDGMENT

This work was partially supported by NSF EarthCube
award numbers ICER-1440323 and ICER-1343800. In
addition the DARPA XDATA program funded a portion of

the work. Effort supported in part by JPL, managed by the
California Institute of Technology on behalf of NASA.

REFERENCES

[1] Rosen, L. 2004. Open Source Licensing: Software Freedom and
Intellectual Property Law. Prentice Hall.

[2] Open Source Initiative, http://opensource.org, Retrieved: July 2015.
[3] Apache Creadur, http://creadur.apache.org, Retrieved: June 2015.
[4] Apache Incubator, http://incubator.apache.org, Retrieved: June 2015.
[5] Apache Creadur Rat, http://creadur.apache.org/rat/, Retrieved July 2015
[6] DARPA Open Catalog http://opencatalog.darpa.mil, Retrieved: July

2015
[7] Dean, J. and Ghemawat, S. 2008. MapReduce: simplified data

processing on large clusters. Communications of the ACM 51.1, pp.
107-113. DOI= http://doi.acm.org/10.1145/1327452.1327492

[8] Mattmann, C., Crichton, D., Medvidovic, N., and Hughes, S. 2006. A
software architecture-based framework for highly distributed and data
intensive scientific applications.In Proceedings of the 28th international
conference on Software engineering (Shanghai, China, May 20-28,
2006). ACM, New York, NY, 721-730. DOI= http://doi.acm.org
10.1145/1134285.1134400

[9] Mattmann, C. and Zitting, J. 2011. Tika in Action. Manning
Publications Co.

[10] NOAA Paleoclimatology Software Resources
https://www.ncdc.noaa.gov/cdo/f?p=517:20:0::::PROXYDATASETLIS
T:59, Retrieved July 2015

[11] Stodden, V. 2009. Enabling reproducible research: Open licensing for
scientific innovation. International Journal of Communications Law and
Policy, Forthcoming.

[12] Distributed Release Audit Tool (DRAT),
http://github.com/chrismattmann/drat/, Retrieved: July 2015.

